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Transition Metal Carbonyl Substitution via a 
Radical Chain Pathway1 

Sir: 

Recognized pathways for substitution at a transition 
metal carbonyl center include rate-determining CO disso­
ciation, displacement of CO in an associative step, and Hg-
and migration.23 We report here the first evidence for a 
heretofore unrecognized radical chain pathway for substitu­
tion, which may prove to be of considerable generality and 
importance. 

Although substitution of HRe(CO)5 by triphenylphos-
phine (PPh3) and other similar ligands has been reported,4 

no kinetics studies have been reported. We found that it was 
exceedingly difficult to obtain reproducible kinetics results. 
Under the most rigorous attainable conditions of solvent 
and reagent purity, with exclusion of light, the thermal 
reaction in hexane, under N2 , of 1O-3 M HRe(CO)5 with 
~ 1 0 - 2 M tributylphosphine, P(rc-C4H9)3, exhibited no 
reaction after 60 days at 25°. Thus HRe(CO)5 is extraordi­
narily inert toward substitution via CO dissociation or hy­
dride migration pathways, in comparison with 
HMn(CO)5 .5 Exposure to light, failure to exhaustively pur­
ify the reagents, and various other circumstances caused the 

reaction to go to completion at widely varying rates to yield 
HRe(CO)4L and HRe(CO)3L2 . With PPh3, HRe(CO)4L 
was formed at similarly erratic rates. Similar results were 
obtained in THF as solvent, except that the reactions were 
generally much faster. Exposure to air or hydroquinone in 
low concentration retards reaction. Contrary to an earlier 
report,6 HRe(CO)5 alone in either solvent does not react 
with dissolved oxygen at room temperature. 

These observations suggest a radical pathway involving 
adventitious radicals as initiators. The following mechanism 
accounts for the observations. 

R + HRe(CO)5 —•* RH + Re(CO)5 (1) 

Re(CO)5 + L — - Re(CO)4L + CO (2) 

Re(CO)4L + L —* Re(CO)3L2 + CO (3) 

Re(CO)4L + HRe(CO)5 —• Re(CO)5 + HRe(CO)4L (4) 

Re(CO)3L2 + HRe(CO)5 — Re(CO)5 + HRe(CO)3L2 

(5) 

Re(CO)5^7Ln + Re(CO)5-771L771 — - R e 2 ( C O ) 1 0 ^ 7 J w (6) 

Chain termination steps involving formation of 
RRe(CO)5 , Re2(CO)9L, and Re2(CO)8L2 (but probably 
not Re2(CO)6L4

7) are all possible. 
The following results support the proposed mechanism. A 

solution containing ICT3 M HRe(CO)5 with 1O-2 M P(«-
C 4 H Q ) 3 in hexane was irradiated with a 1000-W mercury-
xenon lamp filtered through an interference filter centered 
at 311 nm. There resulted a slow substitution to form ini­
tially HRe(CO)4L. After 2 hr the reaction was only about 
10% complete. Continued irradiation yielded HRe(CO)3L2 

in addition to HRe(CO)4L. After 12 hr of irradiation the 
reaction was only about 66% complete. Substitution in this 
system is presumably due to CO photodissociation from 
HRe(CO)5 and later from HRe(CO)4L. 

Our proposed mechanism requires that Re(CO)5 be la­
bile toward substitution, since it probably has a rather short 
lifetime in solution. The absorption of Re2(CO) 10 at 310 
nm is ascribed to the <s-a* transition of the Re-Re bond.89 

Photochemical studies suggest that irradiation of 
Re2(CO)io at this wavelength produces Re(CO)5 radi­
cals.10 A 5 X 1O-4 M solution of Re2(CO),0 with excess 
P ( H - C 4 H Q ) 3 in hexane does not undergo substitution at 
room temperature over a period of several hours. Irradia­
tion at 311 nm for a period of 150 min results in about 15% 
loss of Re2(CO)io, with Re2(CO)9P(«-C4H9)3 and Re-
2(CO)8[P(n-C4H9)3]2 as products along with several other 
as yet unidentified substitution products. These results are 
suggestive of a rapid substitution of (probably) diffusively 
separated Re(CO)5 radicals, followed by recombination of 
substituted radicals."'12 

A hexane solution containing 1O-3 M HRe(CO)5 , ~ 1 0 - 2 

M P(«-C4H9)3 , and 1O -4 M Re2(CO) io shows no evidence 
of reaction in the dark over a period of several hours. The 
reaction solution was irradiated at 311 nm. Typically, the 
parent hydride disappeared very slowly during the first 6-
10 min, during which time only HRe(CO)4L was formed as 
product. After this initial induction period,13 the reaction 
proceeds very rapidly under irradiation; reaction is essen­
tially complete after about 5-6 min. Both HRe(CO)4L and 
HRe(CO)3L2 are formed concurrently, in roughly 3:1 
ratio.14-15 

In all the above experiments the flux of 311 nm photons 
is constant. The results thus indicate that, whatever the 
quantum yield for photosubstitution of Re2(CO)io, the 
quantum yield for substitution of HRe(CO)5 with photoca-
talysis by Re2(CO)io or Mn2(CO)]O is enormously higher, 
consistent with the proposed mechanism. 
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Inhibition of the reaction by dissolved O2 is consistent 
with the proposed mechanism. Formation of O2 complexes 
of carbonyl radicals has been demonstrated in ESR experi­
ments with Co(CO)4 and Mn(CO)5 .1 6 In Re(CO)5O2 the 
unpaired spin could be localized on O2, as suggested by the 
ESR hyperfine data for Mn(CO)5O2 , so that the metal pos­
sesses a coordinatively saturated (i.e., 18 e~) configuration. 
The metal is thus probably not substitutional^ labile nor 
capable of hydrogen abstraction from HRe(CO)5 . 

Additional tests of the radical chain hypothesis are in 
progress. The radical chain process for substitution should 
be applicable to many other transition metal systems. Ex­
tension to other metal hydride systems is especially appeal­
ing. Deliberate photochemical initiation with Re2(CO) 10 or 
other suitable source of radicals may provide a convenient 
route to substituted hydrides, both mononuclear and poly-
nuclear. Radical chain processes may be of importance in 
cobalt carbonyl hydride chemistry. Studies of this and sev­
eral other systems, including metal carbonyl halides and 
other substituted metal carbonyl compounds susceptible to 
radical attack, are also in progress. 
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Fast Proton Transfer at a Micelle Surface 

Sir: 

Micellar chemistry has been developed mainly through 
studies of reactive additives adsorbed into or onto the mi­
celles.1-3 Although "kinetic probes" have provided useful 

information, doubt concerning the location of the adsorp­
tion sites has complicated interpretation of the rate data. 
We report here an investigation of NH-proton exchange of 
micellar long-chain amine salts (e.g., dimethyldodecylam-
monium ion). Several considerations prompted this work. 
(1) Since proton transfer involves the surfactant "heads," 
the reaction would unquestionably proceed at the micelle 
surface (the most unique portion of the micelle). (2) By 
measuring the reactivity of the micelle components them­
selves, we can avoid probes which perturb micellar struc­
ture.4 (3) Dynamic NMR can be used to determine rates of 
proton transfer in solutions at equilibrium. Thus, we could 
avoid systems with a time-dependent composition. (4) As 
has been pointed out repeatedly,1"3 micelles constitute an 
important model for enzymes and membranes. Proton 
transfer at micelle surfaces, therefore, warrants consider­
able attention. 

Rates of NH-proton exchange of N,A'-dimethylhexylam-
ine (C 6 NHR 2

+ ) , Af.A^-dimethyldecylamine (CI 0 NHR 2
+ ) , 

and TV.A'-dimethyldodecylamine (Ci 2 NHR 2
+ ) in acidic 

aqueous solutions were deduced from the slow-passage 
NMR signal of the N-methyl protons. Since proton ex­
change rates of amines decrease with decreasing pH,5 the 
CH3 signal transforms from a singlet to a doublet when the 
pH is lowered sufficiently. NMR spectra were recorded 
with a Jeol-JNM-MH-100 spectrometer equipped with a 
variable temperature probe. Temperatures, calculated by 
the equation of Van Geet,6 were measured frequently dur­
ing a series of runs and are believed to be accurate to 
±0.6°. Four to nine spectra were traced for each sample, 
and the resulting rate constants were averaged. An opti­
mum constant homogeneity was achieved by adjusting the 
resolution control prior to each run while observing a com­
ponent of the methylene multiplets. Natural line widths 
were measured under conditions of fast exchange (e.g., pH 
6 for C 6 NHR 2

+ and pH 2 for C 2 N H R 2
+ ) . Coupling con­

stants, J, were obtained under conditions of slow exchange. 
Since C i 2 NHR 2

+ displayed only partial splitting even in 
concentrated HCl, its J was evaluated by an extrapolation 
method. J = 5.19, 5.08, and 5.24 Hz for C 6 NHR 2

+ , 
C K ) N H R 2

+ , and Ci 2 NHR 2
+ , respectively. Spectra were 

traced using an rf field of 0.1 mG, sweep width of 108 Hz, 
sweep time of 250 sec, and filter band width of 10 Hz. Rate 
constants were calculated with the aid of an RCA Spectra 
70/55 computer which adjusted T (the reciprocal of A:0bsd) 
so as to minimize deviations between experimental and the­
oretical line widths or peak-to-valley ratios.7,8 

At 0.20 M (well above its CMC of ca. 0.02 Af) N,N-
dimethyldodecylammonium ion exchanges protons much 
faster than a nonaggregating analog, MA^-dimethyl-
hexylammonium ion. Thus, the pH necessary to bring the 
observed rates into the NMR "window" is 3 units lower for 
C i 2 N H R 2

+ tlhan for C 6 NHR 2
+ (Table I). Although in­

strumental limitations prevented examination of 
C] 2 NHR 2

+ at concentrations below its CMC, this was pos­
sible for C i 0 NHR 2

+ (Figure 1). The &0bsd rises sharply 
near the expected CMC 1 0 of C i 0 NHR 2

+ , indicating that 
the fast proton transfer is micellar in origin. 

All known nonmicellar ammonium salts transfer protons 
to water by the mechanism shown in eq I.5 Three species in 
addition to water were found to accept protons from 
C 6 NHR 2

+ at pH 3-4: unprotonated amine (Ic2), hydroxide 

R3NiT-OH2 + H2O = £ R3N-HOH + H3O
+ 

* . a 

R3H-FOH — • R3N + HOH (1) 
fast 

R3N + H3O
+ — • R3NH* 
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